120 lines
2.7 KiB
Plaintext
120 lines
2.7 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "a8babbab-fd24-4375-b7fa-797d007b61c4",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"pip install --upgrade pip"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "4f47b87d-9127-4127-8230-9246a13f6699",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"pip install scipy\n",
|
|
"pip install pandas"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "9e9759cd-705a-4a0f-83c7-ae08c84fb333",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import pandas as pd\n",
|
|
"from scipy import stats"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "1edc82b4-4409-4250-9827-c9a217d788b4",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
" Person Vorher Nachher\n",
|
|
"0 1 12 14\n",
|
|
"1 2 15 16\n",
|
|
"2 3 13 15\n",
|
|
"3 4 14 15\n",
|
|
"4 5 11 13\n",
|
|
"5 6 16 17\n",
|
|
"6 7 17 18\n",
|
|
"7 8 10 11\n",
|
|
"8 9 13 14\n",
|
|
"9 10 14 16\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# Daten in ein Dictionary umwandeln\n",
|
|
"data = {\n",
|
|
" \"Person\": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],\n",
|
|
" \"Vorher\": [12, 15, 13, 14, 11, 16, 17, 10, 13, 14],\n",
|
|
" \"Nachher\": [14, 16, 15, 15, 13, 17, 18, 11, 14, 16]\n",
|
|
"}\n",
|
|
"\n",
|
|
"# Erstellen des DataFrames\n",
|
|
"df = pd.DataFrame(data)\n",
|
|
"\n",
|
|
"# Ausgabe des DataFrames\n",
|
|
"print(df)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "6ca1af33-a8dd-4c83-a8cd-41671f010a2f",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"T-Statistik: -8.573214099741122\n",
|
|
"P-Wert: 6.3409243600676025e-06\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"t_statistic, p_value = stats.ttest_rel(df['Vorher'], df['Nachher'], alternative='less')\n",
|
|
"\n",
|
|
"# Ausgabe der Ergebnisse\n",
|
|
"print(f\"T-Statistik: {t_statistic}\")\n",
|
|
"print(f\"P-Wert: {p_value}\")"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.12"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|